Particle motion in Stokes flow near a plane fluid-fluid interface. Part 1. Slender body in a quiescent fluid

نویسندگان

  • SEUNG-MAN YANG
  • GARY LEAL
چکیده

The present study examines the motion of a slender body in the presence of a plane fluid-fluid interface with an arbitrary viscosity ratio. The fluids are assumed to be at rest at infinity, and the particle is assumed to have an arbitrary orientation relative to the interface. The method of analysis is slender-body theory for Stokes flow using the fundamental solutions for singularities (i.e. Stokeslets and potential doublets) near a flat interface. We consider translation and rotation, each in three mutually orthogonal directions, thus determining the components of the hydrodynamic resistance tensors which relate the total hydrodynamic force and torque on the particle to its translational and angular velocities for a completely arbitrary translational and angular motion. To illustrate the application of these basic results, we calculate trajectories for a freely rotating particle under the action of an applied force either normal or parallel to a flat interface, which are relevant to particle sedimentation near a flat interface or to the processes of particle capture via drop or bubble flotation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle motion in Stokes flow near a plane fluidfluid interface. Part 2. Linear shear and axisymmetric straining flows

We consider the motion of a sphere or a slender body in the presence of a plane fluid-fluid interface with an arbitrary viscosity ratio, when the fluids undergo a linear undisturbed flow. First, the hydrodynamic relationships for the force and torque on the particle at rest in the undisturbed flow field are determined, using the method of reflections, from the spatial distribution of Stokeslets...

متن کامل

Numerical simulation of the fluid dynamics in a 3D spherical model of partially liquefied vitreous due to eye movements under planar interface conditions

Partially liquefied vitreous humor is a common physical and biochemical degenerative change in vitreous body which the liquid component gets separated from collagen fiber network and leads to form a region of liquefaction. The main objective of this research is to investigate how the oscillatory motions influence flow dynamics of partial vitreous liquefaction (PVL). So far computational fluid d...

متن کامل

Two-fluid Electrokinetic Flow in a Circular Microchannel (RESEARCH NOTE)

The two-fluid flow is produced by the combined effects of electroosmotic force in a conducting liquid and pressure gradient force in a non-conducting liquid. The Poisson-Boltzmann and Navier-Stokes equations are solved analytically; and the effects of governing parameters are examined. Poiseuille number increases with increasing the parameters involved. In the absence of pressure gradient, the ...

متن کامل

Dispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model

Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...

متن کامل

Fluid Dynamics Investigation of a GDI Fuel Spray by Particle Image Velocimetry

In this work, result of experimental investigation on interaction of fuel spray generated by a swirled type injector, with air motion in a prototype cylinder are presented. Experiments were carried out by planar imaging and particle image velocimetry (PIV) techniques in order to provide information about the spray structure evolution and instantaneous velocity distribution of air motion and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005